Specific inhibition of HCN channels slows rhythm differently in atria, ventricle and outflow tract and stabilizes conduction in the anoxic-reoxygenated embryonic heart model.
نویسندگان
چکیده
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in pacemaker cells very early during cardiogenesis. This work aimed at determining to what extent these channels are implicated in the electromechanical disturbances induced by a transient oxygen lack which may occur in utero. Spontaneously beating hearts or isolated ventricles and outflow tracts dissected from 4-day-old chick embryos were exposed to a selective inhibitor of HCN channels (ivabradine 0.1-10microM) to establish a dose-response relationship. The effects of ivabradine on electrocardiogram, excitation-contraction coupling and contractility of hearts submitted to anoxia (30min) and reoxygenation (60min) were also determined. The distribution of the predominant channel isoform, HCN4, was established in atria, ventricle and outflow tract by immunoblotting. Intrinsic beating rate of atria, ventricle and outflow tract was 164+/-22 (n=10), 78+/-24 (n=8) and 40+/-12bpm (n=23, mean+/-SD), respectively. In the whole heart, ivabradine (0.3microM) slowed the firing rate of atria by 16% and stabilized PR interval. These effects persisted throughout anoxia-reoxygenation, whereas the variations of QT duration, excitation-contraction coupling and contractility, as well as the types and duration of arrhythmias were not altered. Ivabradine (10microM) reduced the intrinsic rate of atria and isolated ventricle by 27% and 52%, respectively, whereas it abolished activity of the isolated outflow tract. Protein expression of HCN4 channels was higher in atria and ventricle than in the outflow tract. Thus, HCN channels are specifically distributed and control finely atrial, ventricular and outflow tract pacemakers as well as conduction in the embryonic heart under normoxia and throughout anoxia-reoxygenation.
منابع مشابه
Differential contribution of mitochondria, NADPH oxidases, and glycolysis to region-specific oxidant stress in the anoxic-reoxygenated embryonic heart.
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old ...
متن کاملPersisting zones of slow impulse conduction in developing chicken hearts.
We performed a correlative electrophysiological and immunohistochemical study of embryonic chicken hearts during the septational period (Hamburger and Hamilton stages 13-31 [2-7 days of incubation]). The analyses yield conclusive evidence for slow conduction, up to 7 days of development, in the outflow tract, in the atrioventricular canal, and in the sinoatrial junction. The conduction velocity...
متن کاملEffect of endotoxemia on heart rate dynamics in rat isolated perfused hearts
Introduction: Beat-to-beat variation in heart rate shows a complex dynamics, and this complexity is changed during systemic inflammatory response syndrome (e.g. sepsis). It is not known whether or not cardiac pacemaker dynamical rhythm is affected by sepsis. The aim of this study was to investigate heart rate dynamics of isolated heart as well as expression of pacemaker channels (HCN) in a r...
متن کاملNew manifestations of electrophysiological remodeling of heart during experimental model of atrial fibrillation in cirrhotic rat isolated heart
Introduction: The present study is aimed to evaluate electrophysiological remodeling of atrioventricular (AV) node and ventricular conduction during experimental atrial fibrillation (AF) model in isolated heart of cirrhotic rats. Methods: Cirrhosis-induced electrophysiological remodeling was evaluated in 24 isolated retrogradely perfused rat hearts in 2 groups (control and cirrhotic). Cirrho...
متن کاملAnalysis of Cripto expression during mouse cardiac myocyte differentiation.
Vertebrate cardiac progenitor cells are initially allocated in two distinct domains, the first and second heart fields. It has been demonstrated that first heart field cells give rise to the myocardial cells in the left ventricle and part of the atria, whereas second heart field cells move into the developing heart tube and contribute to the myocardium of the outflow tract and right ventricle a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pharmacological research
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2010